BIG DATA в e-commerce: собираем данные из общения с клиентом

Смотрите в каталоге
Он-лайн консультанты

Для понимания, что такое большие данные, возьмем книгу «Война и мир» и посчитаем в ней количество слов. Можно сделать это силами одного человека, который потратит несколько суток на данную затею. А можно разобрать тома Толстого по частям, раздать их нескольким людям, которые также посчитают количество слов, а затем сложить полученные данные. Такое решение, к примеру, займет 1 день. В итоге, заметим, что big data – это второе решение нашей задачи по подсчету слов. Если измерять big data в числах, то должно быть не меньше 1 терабайта динамически изменяющихся данных в день.

Мы в RedHelper каждый день обрабатываем порядка 5 терабайт – информацию с 20 тысяч сайтов, на которых есть хотя бы несколько посетителей, т.е. с около 6 млн пользователей коммерческих сайтов. Что это за данные? Страницы сайтов, которые пользуются популярностью среди пользователей, паттерны их поведения, диалоги с операторами виджетов и т.п.

Как использовать big data от ваших виджетов? – 5 кейсов

1.Применение в определении клиента на сайте и прогнозирование его поведения

Благодаря решениям big data можно очень точно понять, кто является вашим клиентом, а кто нет. В принципе все сайты ограничиваются определенным меню, по которому можно вывести паттерны поведения, паттерны устройства сайтов. Кроме того, на основе данных в достаточной степени доступно определение, в какой зоне взаимодействия с клиентом есть рост, а в какой нет.

BIG DATA в e-commerce: собираем данные из общения с клиентом

2. Применение сравнения облака сайтов

Создание рейтинга на основе big data позволяет сделать сайт более эффективным. Так, например, у нас 60 000 клиентов, мы можем проанализировать нужные нам параметры и предоставить информацию в сравнении одного клиента с другим в определенной отрасли, выдать рейтинг по сайтам, активности пользователей. Так как данные — это всегда цифры, с ними сложно спорить и следовательно, их можно активно использовать для успешного бизнес-процесса. 

BIG DATA в e-commerce: собираем данные из общения с клиентом

3. Применение в A/B-тестировании

Благодаря анализу больших данных, можно отследить, как изменения на сайте повлияли на его коммерческую успешность. К примеру, до изменения сайта было состояние А, после – Б. Если учитывать все элементы сайта и поведения на них во всем облаке, можно с достаточной степенью точности сказать, что как только поменялся заголовок, прибавилось покупателей.

Использование виджетов с функциями big data избавляют клиентов от необходимости ставить дополнительные инструменты анализа. Вместе с отчетом о работе системы, они получают информацию по изменению определенной страницы и положительном или отрицательном значении для бизнес-процесса.

BIG DATA в e-commerce: собираем данные из общения с клиентом

4. Применение в выдаче чата

Многие говорят, что их чат или предложение перезвонить в течение 30 секунд бесит пользователей. Чтобы этого избежать достаточно использовать пласт больших данных о выдаче виджета. Так, мы, к примеру, проанализировали поведение людей и определили точку, когда нужно выдавать им чат, чтобы он был максимально эффективным.

Но надо понимать одну тонкость. Как только вы выявляете точку наибольшего согласия для перехода в чат, вы определяете момент, когда человек на чем-то сконцентрирован. Но в этот момент его надо не разозлить своей настойчивостью. Задача состоит в том, чтобы поймать пользователя в точках наименьшей активности, но при этом заинтересованности в продукте.

5. Применение в отчетах по работе виджетов и операторов контактных центров

Самый распространенный способ применения big data – отчеты о работе виджетов и операторов контактных центров. Так можно получить информацию о том, что ваш отдел онлайн-консультирования работает лучше или хуже остальных и почему. Это дает понимание, является ли ваш отдел консультирования конкурентным преимуществом или он не имеет никакого значения и следует отказаться от данных решения.

Можно использовать рейтингование на основе big data для операторов контактных центров. К примеру, посмотреть информацию об эффективности работы того или иного оператора. Так, мы выявили нетривиальный вывод, что летом общий рейтинг операторов падает. Видимо руководители уезжают в отпуска, и сотрудники начинают филонить.

Тоже самое касается звонков, благодаря собранным и проанализированным данным, по оценке операторов колл-центров, мы поняли, что оптимальное время для ответа – это 12 секунд. И уже на этот показатель ориентируются специалисты.

BIG DATA в e-commerce: собираем данные из общения с клиентом

Благодаря решению big data в e-commerce мы ожидаем, что сайты будут гибче подстраиваться под пользователя – контент, цены будут меняться в зависимости от юзера. Анализ будет более доскональным и всеобъемлющим. Мы только в начале пути. Желание знать своего покупателя и предугадывать его желания будут усиливаться. И, конечно, благодаря анализу данных, работа многих сотрудников контактных и сервисных служб в e-commerce претерпит изменения, анализ их эффективности позволит отказаться и оптимизировать рабочую деятельность.

Компании и сервисы: RedHelper
Автор: RedHelper

Подписаться на новости

Читайте также

29 ноября / Комментарии

Прогремела или прошелестела Чёрная Пятница? Предварительные итоги

Прогремела по российскому е-коммерсу Чёрная Пятница. Или прошелестела? Не “перегрел” ли российский е-коммерс акциями по году покупателя?
Топ-эксперт и Главный аналитик Price.ru (холдинг RAMBLER&Co) Петровский Алексей подводит предварительные итоги.

далее →

28 ноября / Комментарии

Статистика предпраздничных распродаж Black Friday

Компания Spycob, занимающаяся сбором и анализом данных на товары (одежду, обувь, аксессуары), которые позволяют находить и сравнивать цены на брендовые вещи со всего мира, объединилась с передовой аналитическо-консалтинговой компанией Excelio, чтобы построить отчет, показывающий инсайты праздничных распродаж и помогающий понять, что же на самом деле происходит со скидками в предпраздничный период, за неделю до Black Friday.

далее →

23 ноября / Комментарии

Будущее онлайн-ритейла: digital-покупатель 2.0

Каждый маркетолог или менеджер ценообразования хотя бы раз серьезно задумывался о том, каким будет онлайн-ритейл в будущем. За последние несколько лет digital изменил конкуренцию в электронной торговле: конкурентное преимущество зависит уже не столько от продукта и поведения ваших конкурентов на рынке, сколько от опыта, который получает ваш клиент вместе с покупкой. Добро пожаловать в эру "Экономики впечатлений"!

далее →

22 ноября / Комментарии

За 10 месяцев 2016 года онлайн-платежи выросли на 45%

Онлайн-платежи за первые десять месяцев 2016 года продемонстрировали рост 45% в денежном выражении по отношению к аналогичному периоду 2015 года. В количественном выражении рост за тот же период составил 48%. Заметнее всего вырос сегмент доставки продуктов питания – на 63% в рублях и на 93% в количестве оплаченных заказов. Самое значительное падение произошло в несетевой рознице, торгующей бытовой техникой, электроникой и сопутствующими товарами – здесь платежи в рублях сократились на 27%, а в количественном выражении на 61%.

далее →

17 ноября / Комментарии

Страхи, проблемы и желания интернет покупателей

Согласно опросу РОЦИТ, проведенному на интерактивной площадке “Голос Рунета” в октябре 2016 г., уже более 90% респондентов совершают покупки в отечественных интернет-магазинах, причем каждый 10-ый делает это раз в неделю. Ситуация с зарубежными интернет-магазинами пока обстоит чуть хуже, еженедельно в них заказывает товары лишь каждый 20-ый. 

далее →

X
Нажмите «Нравится»,
чтобы читать Shopolog.ru в Facebook